
Chapter 15: Acids and Bases

Acids and Bases

Arrhenius Definitions:

- acids compounds that produce an increase in [H⁺] when dissolved in water
- bases compounds that produce an increase in [OH-] when dissolved in water

Lewis Definitions:

- acids electron pair acceptors
- bases electron pair donors

Brønsted-Lowry Definitions:

- acids H⁺ donors
- bases H⁺ acceptors

Lewis Acids & Lewis Bases

- more broad way to define acids and bases
- Lewis acids electron pair acceptors metal cations (M^{n+}) and boron are common Lewis acids

species that are electron deficient; electrophiles

- Lewis bases electron pair donors species with O, N, halogen frequently have lone pairs of electrons to share : Lewis bases species that are electron rich; nucleophiles
- product of a Lewis Acid + Lewis Base reaction is called a Lewis Acid-Base adduct

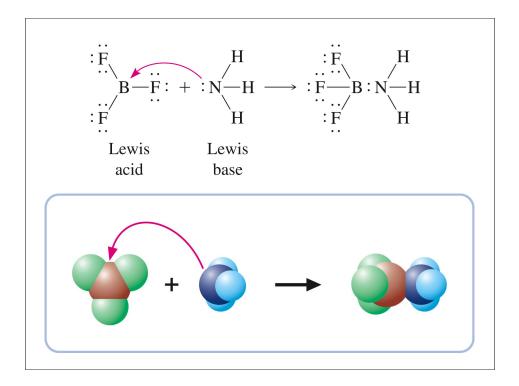
Lewis Acids & Lewis Bases

some examples:

$$Al^{3+} + n H_2O \rightarrow [Al(H_2O)_n]^{3+}$$
 $Cu^{2+} + n NH_3 \rightarrow [Cu(NH_3)_n]^{2+}$
 $BF_3 + NH_3 \rightarrow F_3B-NH_3$

acidic oxides (oxides of nonmetals):

$$SO_3 + H_2O \rightarrow H_2SO_4$$


basic oxides (oxides of metals):

$$CaO + H_2O \rightarrow Ca^{2+} (aq) + 2 OH^{-} (aq)$$

$$Al^{3+}$$
 + 6(: $O-H$) \longrightarrow $Al(:O-H)_6^{3+}$
H

Lewis Lewis acid base

 $Al(OH_2)_6^{3+}$

Brønsted-Lowry Acids & Bases

- Brønsted-Lowry acids H⁺ donors
- Brønsted-Lowry bases H⁺ acceptors
- reaction of a Brøsted-Lowry acid + base is a neutralization reaction characterized by H⁺ transfer

example of neutralization reaction: $HCI (aq) + NaOH (aq) \rightarrow NaCI (aq) + H_2O (I)$ acid base salt water

net ionic equation:

$$H^+$$
 (aq) + OH⁻ (aq) \rightarrow H₂O (I)

Brønsted-Lowry Acids & Bases

- writing ionization (or dissociation) equations to describe Brønsted-Lowry acid/base behavior in aqueous solutions:
- acid ionization (or dissociation) equation:

HA (aq) + H₂O (I)
$$\rightarrow$$
 A⁻ (aq) + H₃O⁺ (aq)
acid base conjugate hydronium
base ion

• base ionization (or dissociation) equation:

B (aq) +
$$H_2O$$
 (I) \rightarrow BH⁺ (aq) + OH⁻ (aq)
base acid conjugate hyroxide
acid ion

Brønsted-Lowry Acids & Bases

HA (aq) + H₂O (I)
$$\rightarrow$$
 A⁻ (aq) + H₃O⁺ (aq)
acid base conjugate hydronium
base ion

B (aq) +
$$H_2O$$
 (I) \rightarrow BH⁺ (aq) + OH⁻ (aq) base acid conjugate hyroxide acid ion

some terminology:

amphoteric: a species that can act as an acid or a base

water is an example of an amphoteric species

conjugate base: species that remains after an acid donates its H⁺

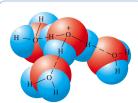
conjugate acid: species that forms after a base accepts a H+

Identify each species in the following equation as etiher the Brønsted-Lowry acid, the Brønsted-Lowry base, the conjugate acid, or the conjugate base.

Identify the conjugate acid-base pairs in the reaction.

$$H_2SO_4$$
 (aq) + HPO_4^{2-} (aq) \rightarrow HSO_4^{-} (aq) + $H_2PO_4^{-}$ (aq)

Brønsted-Lowry Acids & Bases


some specific examples:

acid ionization equation for nitrous acid:

$$HNO_2$$
 (aq) + H_2O (I) $\rightarrow NO_2^-$ (aq) + H_3O^+ (aq) notes: HNO_2 acid H_2O base

* H₃O⁺ conjugate acid *

NO₂⁻ conjugate base * H₃O⁺ & H⁺ are used interchangeably

base ionization equation for ammonia:

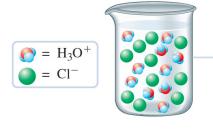
$$NH_3$$
 (aq) + H_2O (I) $\rightarrow NH_4^+$ (aq) + OH^- (aq)

notes: H₂O acid NH₃ base

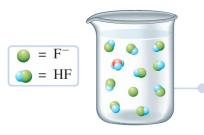
 NH_4^+ conjugate acid OH^- conjugate base

Strong vs. Weak Acids and Bases

Acid and base strength is based on the extent of ionization that occurs when the substance is dissolved in water.


Strong Acids:

- strong electrolytes completely ionized in solution
- there are 6 strong acids KNOWTHEM!
 HCl, HBr, HI, HNO₃, HClO₄, H₂SO₄ (diprotic)


Weak Acids:

- weak electrolytes partially ionized (typically < 5%) in aqueous solution
- any acid that is not a strong acid is a weak acid some examples: HF, H₂CO₃, H₃PO₄, HNO₂, HBrO₄

Strong vs. Weak Acids and Bases

Due to its complete reaction with water, the strong acid HCl exists as the hydronium ion, $H_3O^+(aq)$, and $Cl^-(aq)$ in aqueous solution. Because of this complete reaction, there are essentially no HCl(aq) molecules in the solution.

Due to the reaction with only very few water molecules, the weak acid HF(aq) exists in aqueous solution largely as HF(aq) molecules, with very little $H_3O^+(aq)$ and $F^-(aq)$ being produced.

Weak Acids and Weak Bases: Reversible H⁺ Transfer Reactions

- In Chapter 4 we defined weak acids and weak bases as weak electrolytes (only partially ionized in aqueous solution).
- Now we can talk about their behavior in terms of an equilibrium that exists in solution:

$$HA (aq) + H2O (I) \rightleftharpoons A- (aq) + H3O+ (aq)$$

$$B(aq) + H_2O(I) \rightleftharpoons BH^+(aq) + OH^-(aq)$$

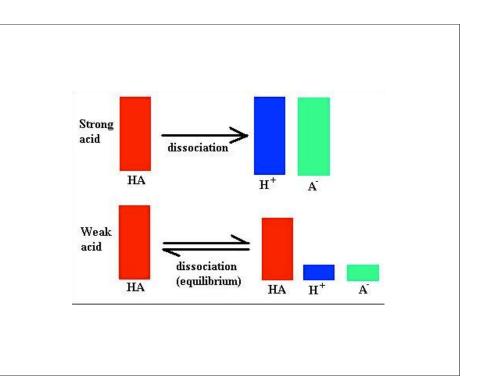
- These are heterogeneous equilibria.
- We will discuss/define equilibrium constants, Ka & Kb.

Strong vs. Weak Acids and Bases

Strong Bases:

- strong electrolytes completely ionized in solution
- the strong bases are the hydroxides of the alkali metals & hydroxides of most alkaline earth metals; KNOWTHEM!

LiOH, NaOH, KOH, RbOH, CsOH Ca(OH)₂, Sr(OH)₂, Ba(OH)₂


Weak Bases:

- weak electrolytes partially ionized (typically < 5%) in aqueous solution
- weak bases tend to be organic compounds that contain nitrogen; ammonia and substituted amines some examples: NH₃, (CH₃)NH₂, (CH₃)₃N C₅H₅N, N₂H₄, NH₂OH

Weak Acids and Acid Ionization Constant, Ka

HA (aq) + H₂O (l)
$$\rightleftharpoons$$
 A⁻ (aq) + H₃O⁺ (aq)
$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

- K_a is the acid ionization constant
- the larger the value of K_a ... the equilibrium position lies farther to the right higher $[H_3O^+]$ greater extent of ionization **stronger acid**

Weak Bases and Base Ionization Constant, Kb

B (aq) + H₂O (I)
$$\rightleftharpoons$$
 BH⁺ (aq) + OH⁻ (aq)
$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

- Kb is the base ionization constant
- the larger the value of $K_b \dots$ the equilibrium position lies farther to the right higher [OH⁻] greater extent of ionization **stronger base**

Relationship Between Strengths in Conjugate Acid/Base Pairs

- the stronger an acid, the weaker its conjugate base
- the weaker an acid, the stronger its conjugate base
- the stronger a base, the weaker its conjugate acid
- the weaker a base, the stronger its conjugate acid

Substance	Formula	K _a
Acetic acid	$HC_2H_3O_2$	1.7×10^{-5}
Benzoic acid	$HC_7H_5O_2$	6.3×10^{-5}
Boric acid	H_3BO_3	5.9×10^{-10}
Carbonic acid	H_2CO_3	4.3×10^{-7}
	HCO ₃ ⁻	4.8×10^{-11}
Cyanic acid	HOCN	3.5×10^{-4}
Formic acid	HCHO ₂	1.7×10^{-4}
Hydrocyanic acid	HCN	4.9×10^{-10}
Hydrofluoric acid	HF	6.8×10^{-4}
Hydrogen sulfate ion	HSO ₄ ⁻	1.1×10^{-2}
Hydrogen sulfide	H_2S	8.9×10^{-8}
	HS^-	$1.2 \times 10^{-13\dagger}$

Hypochlorous acid	HClO	3.5×10^{-8}
Nitrous acid	HNO_2	4.5×10^{-4}
Oxalic acid	$H_2C_2O_4$	5.6×10^{-2}
	$HC_2O_4^-$	5.1×10^{-5}
Phosphoric acid	H_3PO_4	6.9×10^{-3}
	$\mathrm{H_2PO_4}^-$	6.2×10^{-8}
	HPO ₄ ²⁻	4.8×10^{-13}
Phosphorous acid	H_2PHO_3	1.6×10^{-2}
	HPHO ₃ ⁻	7×10^{-7}
Propionic acid	$HC_3H_5O_2$	1.3×10^{-5}
Pyruvic acid	$HC_3H_3O_3$	1.4×10^{-4}
Sulfurous acid	H_2SO_3	1.3×10^{-2}
	HSO ₃ ⁻	6.3×10^{-8}

Table 16.2 Base-Ionization Constants at 25°C				
Substance	Formula	K_b		
Ammonia	NH_3	1.8×10^{-5}		
Aniline	$C_6H_5NH_2$	4.2×10^{-10}		
Dimethylamine	$(CH_3)_2NH$	5.1×10^{-4}		
Ethylamine	$C_2H_5NH_2$	4.7×10^{-4}		
Hydrazine	N_2H_4	1.7×10^{-6}		
Hydroxylamine	NH ₂ OH	1.1×10^{-8}		
Methylamine	CH_3NH_2	4.4×10^{-4}		
Pyridine	C_5H_5N	1.4×10^{-9}		
Urea	NH ₂ CONH ₂	1.5×10^{-14}		

Relationship Between Structure and Strengths of Acids

- Brønsted-Lowry acids are H⁺ donors ... so ... acid strength is dependent on how readily donated the acidic H⁺ is
- the weaker the interaction between A–H (in binary acids) or O–H (in oxoacids), the stronger the acid
- the stronger the interaction between A–H (in binary acids) or O–H (in oxoacids), the weaker the acid

Relationship Between Structure and Strengths of Acids: Binary Acids (HA)

• For a set of binary acids in which A belongs to the same group of the periodic table, H–A bond strength is the determining factor in acid strength.

the stronger the H-A bond, the weaker the acid

- H–A bond strength is related to atomic size:
 - bond strength decreases as atomic radius increases
 - atomic radius increases moving down the periodic table

Relationship Between Structure and Strengths of Acids: Binary Acids (HA)

• For a set of binary acids in which A is in the <u>same</u> <u>period</u> of the periodic table, H–A bond *polarity* is the determining factor in acid strength.

the more polar the H-A bond, the stronger the acid

 H–A bond polarity depends on the electronegativity of A:

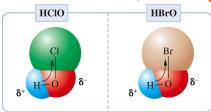
bond polarity increases as the electronegativity of A increases

electronegativity increases moving left to right across the periodic table

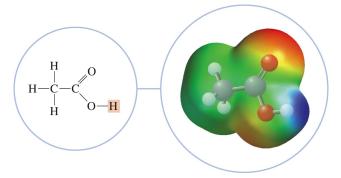
Relationship Between Structure and Strengths of Acids: Binary Acids (HA)

group/period of A	group VIA	group VIIA	
2 nd period	H_2O $K_a = 1 \times 10^{-14}$	HF K _a = 6.8 x 10 ⁻⁴	
3 rd period	H_2S $K_a = 9 \times 10^{-8}$	HCI K _a very large	
4 th period	H_2Se $K_a = 1.3 \times 10^{-4}$	HBr Ka very large	
5 th period	H_2 Te $K_a = 2.3 \times 10^{-3}$	HI K _a very large	

HA bond strength decreases


HA acid strength increases

Electronegativity of A increases
HA bond polarity increases
HA acid strength increases


Relationship Between Structure and Strengths of Acids: Oxoacids (H_nAO_m)

- For a set of oxoacids with the <u>same number of O's</u>, the acid strength increases as the electronegativity of A increases.
- if A is more electronegative, it pulls electron density toward itself resulting in a more polarized O–H bond

the more polar the O-H bond, the stronger the acid

Carboxylic Acids: O-H Bond Polarization and Acid Strength

- acetic acid (CH₃COOH) has $K_a = 1.8 \times 10^{-5}$
- How will the acid strength change as 1,2 or 3 H's are replaced with F? With Cl?

Relationship Between Structure and Strengths of Acids: Oxoacids (H_nAO_m)

HOI
$$\chi_{I} = 2.5$$

$$K_{a} = 2.3 \times 10^{-11}$$
HOBr
$$\chi_{Br} = 2.8$$

$$K_{a} = 2.0 \times 10^{-9}$$
HOCI
$$\chi_{CI} = 3.0$$

 $K_a = 3.5 \times 10^{-8}$

acetic acid

$$CH_3COOH$$

 $K_a = 1.8 \times 10^{-5}$

monofluoroacetic acid CH_2FCOOH $K_a = 2.5 \times 10^{-3}$

monochloroacetic acid $CH_2CICOOH$ $K_a = 1.4 \times 10^{-3}$

dichloroacetic acid $CHCl_2COOH$ $K_a = 5.5 \times 10^{-2}$

trifluoroacetic acid CF₃COOH K_a = 10 trichloroacetic acid CCI₃COOH K_a = 0.23

Relationship Between Structure and Strengths of Acids: Oxoacids (H_nAO_m)

- For a set of oxoacids with the <u>same atom A</u>, the acid strength increases as the number of O's increases.
- As the number of electronegative O's in the molecule increases, the net effect is that electron density is pulled away from H resulting in a more polarized O-H bond.

the more polar the O-H bond, the stronger the acid

acid:	HCIO	HCIO ₂	HClO₃	HClO₄
K _a =	3.5 × 10 ⁻⁸	1.2 x 10 ⁻²	~ I	v. large

Auto-Ionization of Water and K_W

- recall that water is amphoteric can act as an acid or a base
- now consider a reaction between 2 water molecules:

$$H_2O(I) + H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

 this is called the auto-ionization of water heterogeneous equilibrium

$$K_W = [H_3O^+][OH^-]$$

at 25°C, $K_W = 1.0 \times 10^{-14}$

In any aqueous solution at $25^{\circ}C$: $[H_3O^+][OH^-] = K_W = 1.0 \times 10^{-14}$

Acidic, Basic & Neutral Aqueous Solutions

 distinguish between acidic, basic and neutral solutions based on the relative [H₃O⁺] & [OH⁻]

if
$$[H_3O^+] > [OH^-]$$
, solution is acidic
if $[OH^-] > [H_3O^+]$, solution is basic
if $[H_3O^+] = [OH^-]$, solution is neutral

• for a neutral solution at 25°C:

$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

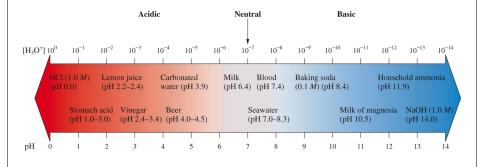
example:

In a sample of lemon juice, $[H_3O^+] = 2.5 \times 10^{-3} \text{ M}$. Calculate the $[OH^-]$, and classify lemon juice as an acidic, basic or neutral solution.


example:

At 50° C, $K_W = 5.5 \times 10^{-14}$. Determine [H₃O⁺] and [OH⁻] in a neutral solution at 50° C.

The pH Scale


logarithmic scale of $[H_3O^+]$ in solution

$$pH = -log[H_3O^+]; [H_3O^+] = 10^{-pH}$$

Relationship Between [H₃O⁺] and pH

- as $[H_3O^+]$ changes by a factor of 10, the pH of the solution changes by 1 unit
- higher [H₃O⁺] corresponds to lower pH
- higher [H₃O⁺] corresponds to more acidic solution

pH Calculations: Relative Acidity and Basicity of Solutions

recall:

- in any aqueous solution at 25°C: $[H_3O^+][OH^-] = I \times 10^{-14}$
- $pH = -log[H_3O^+]; [H_3O^+] = 10^{-pH}$
- higher [H⁺]

 more acidic solution
 lower pH
- higher [OH⁻] → lower [H⁺] →
 more basic solution → higher pH

pH Calculations: Relative Acidity and Basicity of Solutions

ex: Calculate the pH of 0.00283 M HNO₃ (aq).

ex: Will the pH of 0.00283 M HNO₂ (aq) be less than, greater than, or equal to the pH of 0.00283 M HNO₃ (aq)? Why?

ex: Calculate the $[H_3O^+]$ in a sol'n with pH = 3.61.

ex: Calculate the pH of 0.20 M Ba(OH)₂ (aq) and 0.20 M NaOH (aq). Should they be the same? Why or why not?

Other Logarithmic Quantities

- pOH = $-\log$ [OH $^-$] = 10^{-pOH} the higher the [OH $^-$], the lower the pOH as [OH $^-$] changes by factor of 10, the pOH changes by I unit
- $pK_a = -log K_a$ $K_a = 10^{-pK_a}$ the larger the K_a of an acid, the smaller the pK_a
- $pK_b = \mbox{ log } K_b \mbox{ } K_b = 10^{-pKb}$ the larger the K_b of a base, the smaller the pK_b
- $pK_W = log K_W$ at 25°C, $pK_W = 14.00$